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Filter Design Process

Step-1 : Define filter specs
Pass-band, stop-band, optimization criterion,...
Step-2 : Derive optimal transfer function
FIR or IIR design
Step-3 : Filter realization (block scheme/flow graph)
Direct form realizations, lattice realizations,...
Step-4 : Filter implementation (software/hardware)

Finite word-length issues, ... Chapter-5

Question: implemented filter-= designed filter ?

‘You can'’t always get what you want’ -dagger/Richards (?)
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Chapter-5 : Filter Implementation

* Introduction
Filter implementation & finite wordlength problem

Coefficient Quantization
Arithmetic Operations
Quantization noise

Statistical Analysis

Limit Cycles
Scaling

PS: Short version, does not include...
Fixed & floating point representations, overflow, etc. (see literature)
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Introduction

Back to Chapter-4...

Q: Why bother

any different realizations
e and the'same filter?
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Introduction

Filter implementation/finite'word-length problem

» So far have assumed that signals/coefficients/arithmetic
operations areffepresented/performed with'infinite precision

In practice, nu can be represented only to a finite
precision, and ignals/coefficients/arithmetic
operations are tantization (truncation/
rounding/...) e 3

* Investigate im
- quantizati

- quantizati
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Introduction

Filter implementation/finite word-length problem

« We consider fixed-point filter implementations, with a “short’

word-length
In hardware design, with tight speed requirements, finite

word-length problem is a relevant problem

In signal processors with a “sufficiently long * word-length,
e.g. with 24 bits (=7 decimal digits) precision, or with
floating-point representations and arithmetic, finite word-
length issues are less relevant
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Introduction: Example

IR fiter % IIR Elliptic Lowpass filter designed using

% ELLIP function.

% All frequency values are in Hz.

Fs =48000; % Sampling Frequency

L =8; % Order

Fpass ; % Passband Frequency
Apass = % Passband Ripple (dB)
Astop = 160; % Stopband Attenuation (dB)

Magnitude(dB)

pii2
Circular frequency (Radians)

Imaginary Part

Transfer function

Poles & zeros Real Part
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Introduction: Example

Filter outputs...

Direct form realization
@ infinite precision...

Amplitude

Lattice-ladder realization
@ infinite precision...

Amplitude

Samples
Error difference: -161.5704 dB

— Difference lIR-Lattice

Difference...

Amplitude

Samples
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Introduction: Example

Filter outputs...

Filter output
T T

Direct form realization
@ infinite precision...

Amplitude

Direct form realization
@ 8-bit precision... : 3

Amplitude

Samples
Error difference: -0.13965 dB

— Difference lIR-QuantizellR

Amplitude

Difference...

Samples
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Introduction: Example

Filter outputs...

Filter output
T T T

Direct form realization
@ infinite precision...

Amplitude

Lattice-ladder realization
@ 8-bit precision...

Amplitude

Samples
Error difference: -21.3498 dB

— Difference lIR-QuantizeL attice

Amplitude

Difference...

on
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Coefficient Quantization

Coefficient quantization problem

 Filter design in Matlab (e.g.) provides filter coefficients to
15 decimal digits (such that filter meets specifications)

» For implementation, have to quantize coefficients to the
word-length used for the implementation

* As a result, implemented filter may fail to meet
specifications...
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Discrete-Time Signal Processing, Third Edition
Exa m p Ie fro m Alan V. Oppenheim * Ronald W. Schafer

Figure 6.47 IR coefficient quantization example. (a) Log magnitude for unquantized elliptic bandpass filter.
(b) Magnitude in passband for unquantized (solid line) and 16-bit quantized cascade form (dashed line).

Figure 6.48 IIR cosfficient quantization example. (a) Poles and zeros of H(z) for unquantized coefficients. (b) Poles
and zeros for 16-bit quanization of the direct form coefficients.

log magnitude (dB)

| i | | |
) 01w 027 03w 04w 0

Unquantized and 16-bit parallel form  — @1

037 0327 0347
Radian frec

Better selec a good realization
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Coefficient Quantization

Coefficient quantization effect on pole locations

e Example : 2nd-order System (e.g. for cascade/direct form realization)

=l —2
l+o,z7 + B,z

=

H,(z)=
/2 l+y,z" +0,z

“Triangle of stability’ : denominator polynomial is stable (i.e.
roots inside unit circle) iff coefficients lie inside triangle...

Proof: Apply Schur-Cohn stability test (see Chapter-4).
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Coefficient Quantization

» Example (continued)

With 5 bits per coefficient, all possible “quantized’ pole positions are...

fory, =-2:0.1250:2
ford, = —1:0.0625:1 . & @%ﬁ%*

plot(poles) (if stable) o

end M *+ ***N ***** +* ***

Low density of “quantized’ pole locations at z=1, z=-1,
hence problem for narrow-band LP and HP filters in (transposed) direct
form (see Chapter-3).
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Coefficient Quantization

» Example (continued)
Possible remedy: “coupled realization’

Poles are where ERRY7N/RIN are realized/quantized

hence ‘quantized’ pole locations are (5 bits)

coefficient precision = pole precision
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Coefficient Quantization

Coefficient quantization effect on pole locations
» Higher-order systems (first-order analysis)

polynomial : 1+a,.z7"' +a,.2° +...+a,.2 "

roots are : p,, p,
“quantized' polynomial: 1+3a,.z7' +@,.27° +...+4,.27"
“quantized' roots are: p,,p,

=P s=s_El_[(pl ) (4, —a,)

=l

=> Tightly spaced poles (e.g. for narrow band filters) imply
high sensitivity of pole locations to coefficient quantization

=» Hence preference for low-order systems (e.g. in parallel/cascade)
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Coefficient Quantization

Coefficient quantization effect on zero locations

» Analog filter design + bilinear transformation often lead to numerator
polynomial of the form (e.g. 2nd-order cascade realization)

hence with zeros always on the unit circle

bbby
44t Hy,
S+ *y

Quantization of the coefficient

shifts zeros on the unit circle,
which mostly has only minor effect
on the filter characteristic.

Hence mostly ignored...
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Coefficient Quantization

Coefficient quantization in lossless lattice realizations

o = original transfer function

+ = transfer function after 8-bit
truncation of lossless lattice
filter coefficients

- = transfer function after 8-bit
truncation of direct-form
coefficients (bi’ s)

Phase (deg); Magritude (dB)

In lossless lattice, all coefficients are sines and cosines, hence all
values between —1 and +1..., i.e. "dynamic range’ and coefficient
quantization error well under control.
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Arithmetic Operations

Quantization noise problem

If two B-bit numbers are added, the result is a B+1 bit number.
If two B-bit numbers are multiplied, the result is a 2B-1 bit number.

Typically (especially so in an |IR (feedback) filter), the result of an
addition/multiplication has to be represented again as a B’ -bit number
(e.g. B’ =B). Hence have to remove least significant bits (*).

Rounding/truncation/... to B’ bits introduces quantization noise.

The effect of quantization noise is usually analyzed in a statistical
manner (see p.20-25)

Quantization, however, is a deterministic non-linear effect, which may
give rise to limit cycle oscillations (see p.26-30)
(*) ..and/or most significant bits - not considered here
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Quantization Noise / Statistical Analysis

Quantization mechanisms
Rounding Truncation Magnitude Truncation

TR
-

probability

mean=0 mean=(-0.5)LSB (biased!) mean=0
variance=(1/12)LSB*2  variance=(1/12)LSB"2 variance=(1/6)LSB"2

PS: ...assuming input to quantization is uniformly distributed (is it?)
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Quantization Noise / Statistical Analysis

Statistical analysis is based on the following assumptions :

- Each quantization error is random, i.e. uncorrelated/independent of the
number that is quantized, and with uniform probability distribution
function (see previous slide) (ps: model more suited for multipliers than for adders)

- Successive quantization errors at the output of a given multiplier/adder
are uncorrelated/independent (=white noise assumption)

- Quantization errors at the outputs of different multipliers/adders are
uncorrelated/independent (=independent sources assumption)

= One noise source is inserted
after each multiplier/adder

= Since the filter is a linear filter the e2[k]
output noise generated by each noise source

is added to the output signal y[K]
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Quantization Noise / Statistical Analysis

Effect on the output signal of a noise generated at a particular
point in the filter is computed as follows:
- Noise is e[K], assumed white (=flat PSD) with mean & variance A
- Transfer function from from e[K] to filter output is G(z),g[k]

(= ‘noise transfer function”)
N U R R T . -( DC — gain) = u,.G(2)|

- Noise variance at the output is

o’ .('noise - gain') = aj.(L f|G(ejw)|2dw)
27

=T

- 03.2|g[k]|2 -o2|gl:

Repeat procedure for each noise source...
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Quantization Noise / Statistical Analysis

PS: In a transposed direct form realization all noise transfer
functions are equal (up to delay), hence all noise sources
can be lumped into one equivalent noise source

...which simplifies analysis considerably

ylK]
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Quantization Noise / Statistical Analysis

PS: In a direct form realization all noise sources can be

lumped into two equivalent noise sour€es
Je1[k]
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Quantization Noise / Statistical Analysis

PS: Quantization noise of A/D-converters can be modeled/
analyzed in a similar fashion.

Noise transfer function is filter transfer function H(z)

PS: Quantization noise of D/A-converters can be modeled/
analyzed in a similar fashion.

Non-zero quantization noise if D/A converter wordlength is
shorter than filter wordlength.

Noise transfer function = 1
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Quantization Noise / Limit Cycles

Statistical analysis is simple/convenient, but quantization is
truly a non-linear effect, and should be analyzed as a
deterministic process

Though very difficult, such analysis may reveal odd behavior :
Example: y[k] = -0.625.y[k-1]+u[k]
4-bit rounding arithmetic
input u[k]=0, y[0]=3/8
output y[k] = 3/8, -1/4, 1/8, -1/8, 1/8, -1/8, 1/8, -1/8, 1/8,..

Oscillations in the absence of input (u[k]=0) are called
‘zero-input limit cycle oscillations’
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Quantization Noise / Limit Cycles

Example: y[k] =-0.625.y[k-1]+u[K]

4-bit truncation (instead of rounding)

input u[k]=0, y[0]=3/8

output y[k] = 3/8, -1/4, 1/8, 0, 0, 0,.. (no limit cycle!)
Example: y[k] = 0.625.y[k-1]+u[K]

4-bit rounding

input u[k]=0, y[0]=3/8

output y[k] = 3/8, 1/4, 1/8, 1/8, 1/8, 1/8,..
Example: y[k] = 0.625.y[k-1]+u[k]

4-bit truncation

input u[k]=0, y[0]=-3/8

output y[k] = -3/8, -1/4, -1/8, -1/8, -1/8, -1/8,..
Conclusion: weird, weird, weird,... !
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Quantization Noise / Limit Cycles

» Limit cycle oscillations are clearly unwanted (e.g. may be
audible in speech/audio applications)

» Limit cycle oscillations can only appear if the filter has
feedback. Hence FIR filters cannot have limit cycle
oscillations

+ Mathematical analysis is very difficult ®
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Quantization Noise / Limit Cycles

Truncation often helps to avoid limit cycles (e.g.
maghnitude truncation, where absolute value of quantizer
output is never larger than absolute value of quantizer input
(="passive quantizer’))

Some filter realizations can be made limit cycle free, e.g.
coupled realization, orthogonal filters (details omitted)
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Quantization Noise / Limit Cycles

Here’s the good news:

Fora..

* lossless lattice realization of a general IIR filter

* lattice-ladder realization of a general IIR filter

...and when magnitude truncation (="passive quantization’ ) is used,
the filter is guaranteed to be free of limit cycles!

(details omitted)

Intuition: quantization consumes energy/power, orthogonal filter
operations do not generate power to feed limit cycle
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Scaling

The scaling problem

Finite word-length implementation implies maximum representable
number. Whenever a signal (output or internal) exceeds this value,
overflow occurs.

Digital overflow may lead (e.g. in 2’ s-complement arithmetic) to polarity
reversal (instead of saturation such as in analog circuits), hence may
be very harmful.

Avoid overflow through proper signal scaling, implemented by bit shift-
operations applied to signals, or by scaling of filter coefficients, or..

Scaled transfer function may be c.H(z) instead of H(z) (hence need
proper tracing of scaling factors)
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Scaling

The scaling problem

Further details see...

— Literature

— http://homes.esat.kuleuven.be/~dspuser/DSP-CIS/2016-2017/material.html
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