
1

DSP

 Chapter-5 : Filter Implementation

Marc Moonen
Dept. E.E./ESAT-STADIUS, KU Leuven

marc.moonen@esat.kuleuven.be
www.esat.kuleuven.be/stadius/

DSP 2016 / Chapter-5: Filter Implementation 2 / 32

Filter Design Process

•  Step-1 : Define filter specs
 Pass-band, stop-band, optimization criterion,…

•  Step-2 : Derive optimal transfer function
 FIR or IIR design

•  Step-3 : Filter realization (block scheme/flow graph)
 Direct form realizations, lattice realizations,…
•  Step-4 : Filter implementation (software/hardware)

 Finite word-length issues, …

 Question: implemented filter = designed filter ?
 ‘You can’t always get what you want’ -Jagger/Richards (?)

Chapter-3

Chapter-4

Chapter-5

2

DSP 2016 / Chapter-5: Filter Implementation 3 / 32

Chapter-5 : Filter Implementation

•  Introduction
Filter implementation & finite wordlength problem

•  Coefficient Quantization
•  Arithmetic Operations

Quantization noise
Statistical Analysis
Limit Cycles
Scaling

•  PS: Short version, does not include…
Fixed & floating point representations, overflow, etc. (see literature)

DSP 2016 / Chapter-5: Filter Implementation 4 / 32

Q:Why bother
 about many different realizations
 for one and the same filter?

Introduction

Back to Chapter-4…

3

DSP 2016 / Chapter-5: Filter Implementation 5 / 32

Introduction

Filter implementation/finite word-length problem

•  So far have assumed that signals/coefficients/arithmetic

operations are represented/performed with infinite precision
•  In practice, numbers can be represented only to a finite

precision, and hence signals/coefficients/arithmetic
operations are subject to quantization (truncation/
rounding/...) errors

•  Investigate impact of…
 - quantization of filter coefficients
 - quantization in arithmetic operations

DSP 2016 / Chapter-5: Filter Implementation 6 / 32

Introduction

Filter implementation/finite word-length problem

•  We consider fixed-point filter implementations, with a `short’
word-length

 In hardware design, with tight speed requirements, finite
word-length problem is a relevant problem

•  In signal processors with a `sufficiently long‘ word-length,

e.g. with 24 bits (=7 decimal digits) precision, or with
floating-point representations and arithmetic, finite word-
length issues are less relevant

4

DSP 2016 / Chapter-5: Filter Implementation 7 / 32

Introduction: Example

Transfer function

•  % IIR Elliptic Lowpass filter designed using
•  % ELLIP function.
•  % All frequency values are in Hz.
•  Fs = 48000; % Sampling Frequency
•  L = 8; % Order
•  Fpass = 9600; % Passband Frequency
•  Apass = 60; % Passband Ripple (dB)
•  Astop = 160; % Stopband Attenuation (dB)
• 

Poles & zeros

DSP 2016 / Chapter-5: Filter Implementation 8 / 32

Introduction: Example

Filter outputs…

Direct form realization
 @ infinite precision…

Lattice-ladder realization
 @ infinite precision…

Difference…

5

DSP 2016 / Chapter-5: Filter Implementation 9 / 32

Introduction: Example

Filter outputs…

Direct form realization
 @ infinite precision…

Direct form realization
 @ 8-bit precision…

Difference…

DSP 2016 / Chapter-5: Filter Implementation 10 / 32

Introduction: Example

Filter outputs…

Direct form realization
 @ infinite precision…

Lattice-ladder realization
 @ 8-bit precision…

Difference…

Better select a good realization !

6

DSP 2016 / Chapter-5: Filter Implementation 11 / 32

Coefficient Quantization

Coefficient quantization problem

•  Filter design in Matlab (e.g.) provides filter coefficients to

15 decimal digits (such that filter meets specifications)
•  For implementation, have to quantize coefficients to the

word-length used for the implementation
•  As a result, implemented filter may fail to meet

specifications…

DSP 2016 / Chapter-5: Filter Implementation 12 / 32

Example from

Better select a good realization !

7

DSP 2016 / Chapter-5: Filter Implementation 13 / 32

Coefficient Quantization

Coefficient quantization effect on pole locations

•  Example : 2nd-order system (e.g. for cascade/direct form realization)

 `Triangle of stability’ : denominator polynomial is stable (i.e.
 roots inside unit circle) iff coefficients lie inside triangle…

 Proof: Apply Schur-Cohn stability test (see Chapter-4).

21

21

..1
..1)(
−−

−−

++

++
=

zz
zzzH

ii

ii
i δγ

βα

iδ

iγ
-1

1
-2 2

DSP 2016 / Chapter-5: Filter Implementation 14 / 32

Coefficient Quantization

•  Example (continued)
 With 5 bits per coefficient, all possible `quantized’ pole positions are...

 Low density of `quantized’ pole locations at z=1, z=-1,

hence problem for narrow-band LP and HP filters in (transposed) direct
form (see Chapter-3).

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

end
end

)plot(poles
1:0625.0:1for

2:1250.0:2for

stable) (if

−=

−=

i

i

δ
γ

8

DSP 2016 / Chapter-5: Filter Implementation 15 / 32

Coefficient Quantization

•  Example (continued)
 Possible remedy: `coupled realization’
 Poles are where are realized/quantized
 hence ‘quantized’ pole locations are (5 bits)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

µη .j± 1,1 <<− µη

Δ

Δ

+

+ +

κ

η

µ
λ

η

µ
-

y[k]

u[k]

coefficient precision = pole precision

DSP 2016 / Chapter-5: Filter Implementation 16 / 32

Coefficient Quantization

Coefficient quantization effect on pole locations
•  Higher-order systems (first-order analysis)

 è Tightly spaced poles (e.g. for narrow band filters) imply
 high sensitivity of pole locations to coefficient quantization
 è Hence preference for low-order systems (e.g. in parallel/cascade)

polynomial : 1+ a1.z
−1 + a2.z

−2 +...+ aL.z
−L

roots are : p1, p2,..., pL

`quantized' polynomial: 1+ â1.z
−1 + â2.z

−2 +...+ âL.z
−L

`quantized' roots are: p̂1, p̂2,..., p̂L

p̂l − pl ≈ −
pl
L−i

(pl − pj)
j≠l
∏

.(âi − ai)
i=1

L

∑

9

DSP 2016 / Chapter-5: Filter Implementation 17 / 32

Coefficient Quantization

Coefficient quantization effect on zero locations
•  Analog filter design + bilinear transformation often lead to numerator

polynomial of the form (e.g. 2nd-order cascade realization)
 hence with zeros always on the unit circle

 Quantization of the coefficient
 shifts zeros on the unit circle,
 which mostly has only minor effect
 on the filter characteristic.
 Hence mostly ignored…

21.cos21 −− +− zziθ

iθcos2

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

DSP 2016 / Chapter-5: Filter Implementation 18 / 32

Coefficient Quantization

Coefficient quantization in lossless lattice realizations

 In lossless lattice, all coefficients are sines and cosines, hence all
 values between –1 and +1…, i.e. `dynamic range’ and coefficient
 quantization error well under control.

o = original transfer function
 + = transfer function after 8-bit

 truncation of lossless lattice
filter coefficients

 - = transfer function after 8-bit
 truncation of direct-form
 coefficients (bi’s)

10

DSP 2016 / Chapter-5: Filter Implementation 19 / 32

Arithmetic Operations

Quantization noise problem
•  If two B-bit numbers are added, the result is a B+1 bit number.
•  If two B-bit numbers are multiplied, the result is a 2B-1 bit number.
•  Typically (especially so in an IIR (feedback) filter), the result of an

addition/multiplication has to be represented again as a B’-bit number
(e.g. B’=B). Hence have to remove least significant bits (*).

•  Rounding/truncation/… to B’ bits introduces quantization noise.

•  The effect of quantization noise is usually analyzed in a statistical
manner (see p.20-25)

•  Quantization, however, is a deterministic non-linear effect, which may
give rise to limit cycle oscillations (see p.26-30)

 (*) ..and/or most significant bits - not considered here

DSP 2016 / Chapter-5: Filter Implementation 20 / 32

Quantization Noise / Statistical Analysis

Quantization mechanisms
 Rounding Truncation Magnitude Truncation

 mean=0 mean=(-0.5)LSB (biased!) mean=0
 variance=(1/12)LSB^2 variance=(1/12)LSB^2 variance=(1/6)LSB^2

 PS: …assuming input to quantization is uniformly distributed (is it?)

input

probability

error

output

11

DSP 2016 / Chapter-5: Filter Implementation 21 / 32

Quantization Noise / Statistical Analysis

Statistical analysis is based on the following assumptions :
 - Each quantization error is random, i.e. uncorrelated/independent of the

number that is quantized, and with uniform probability distribution
function (see previous slide) (ps: model more suited for multipliers than for adders)

 - Successive quantization errors at the output of a given multiplier/adder
are uncorrelated/independent (=white noise assumption)

 - Quantization errors at the outputs of different multipliers/adders are
uncorrelated/independent (=independent sources assumption)

èOne noise source is inserted
 after each multiplier/adder
èSince the filter is a linear filter the
 output noise generated by each noise source
 is added to the output signal

Δ
y[k]

u[k] +

x
-.99

+ e1[k]

+ e2[k]

DSP 2016 / Chapter-5: Filter Implementation 22 / 32

Quantization Noise / Statistical Analysis

Effect on the output signal of a noise generated at a particular
point in the filter is computed as follows:
 - Noise is e[k], assumed white (=flat PSD) with mean & variance
 - Transfer function from from e[k] to filter output is G(z),g[k]
 (=‘noise transfer function’)
 - Noise mean at the output is
 - Noise variance at the output is

 Repeat procedure for each noise source…

2, ee σµ

µe.('DC−gain') = µe.G(z) z=1

2

2
2

0

22

222

.][.

))(
2
1.()gain'-noise.(`

gkg

deG

e
k

e

j
ee

σσ

ω
π

σσ
π

π

ω

==

=

∑

∫
∞

=

−

12

DSP 2016 / Chapter-5: Filter Implementation 23 / 32

Quantization Noise / Statistical Analysis

PS: In a transposed direct form realization all noise transfer
 functions are equal (up to delay), hence all noise sources
 can be lumped into one equivalent noise source

 …which simplifies analysis considerably

u[k]

Δ Δ Δ Δ

x
-a4

x
-a3

x
-a2

x
-a1

y[k]

x
bo

x
b4

x
b3

x
b2

x
b1

+ + + +
x1[k] x2[k] x3[k] x4[k]

e[k]

DSP 2016 / Chapter-5: Filter Implementation 24 / 32

Quantization Noise / Statistical Analysis

PS: In a direct form realization all noise sources can be
 lumped into two equivalent noise sources

 …which simplifies analysis considerably

e1[k]

Δ Δ Δ Δ

x
bo

x
b4

x
b3

x
b2

x
b1

+ + + +
y[k]

+ + + +

x
-a4

x
-a3

x
-a2

x
-a1

x1[k] x2[k] x3[k] x4[k]

u[k]

e2[k]

13

DSP 2016 / Chapter-5: Filter Implementation 25 / 32

Quantization Noise / Statistical Analysis

PS: Quantization noise of A/D-converters can be modeled/
analyzed in a similar fashion.

 Noise transfer function is filter transfer function H(z)

PS: Quantization noise of D/A-converters can be modeled/

analyzed in a similar fashion.
 Non-zero quantization noise if D/A converter wordlength is

shorter than filter wordlength.
 Noise transfer function = 1

DSP 2016 / Chapter-5: Filter Implementation 26 / 32

Quantization Noise / Limit Cycles

Statistical analysis is simple/convenient, but quantization is
truly a non-linear effect, and should be analyzed as a
deterministic process

Though very difficult, such analysis may reveal odd behavior :
 Example: y[k] = -0.625.y[k-1]+u[k]
 4-bit rounding arithmetic
 input u[k]=0, y[0]=3/8
 output y[k] = 3/8, -1/4, 1/8, -1/8, 1/8, -1/8, 1/8, -1/8, 1/8,..

Oscillations in the absence of input (u[k]=0) are called

`zero-input limit cycle oscillations’

14

DSP 2016 / Chapter-5: Filter Implementation 27 / 32

Quantization Noise / Limit Cycles

Example: y[k] = -0.625.y[k-1]+u[k]
 4-bit truncation (instead of rounding)
 input u[k]=0, y[0]=3/8
 output y[k] = 3/8, -1/4, 1/8, 0, 0, 0,.. (no limit cycle!)
Example: y[k] = 0.625.y[k-1]+u[k]
 4-bit rounding
 input u[k]=0, y[0]=3/8
 output y[k] = 3/8, 1/4, 1/8, 1/8, 1/8, 1/8,..
Example: y[k] = 0.625.y[k-1]+u[k]
 4-bit truncation
 input u[k]=0, y[0]=-3/8
 output y[k] = -3/8, -1/4, -1/8, -1/8, -1/8, -1/8,..
Conclusion: weird, weird, weird,… !

DSP 2016 / Chapter-5: Filter Implementation 28 / 32

Quantization Noise / Limit Cycles

•  Limit cycle oscillations are clearly unwanted (e.g. may be
audible in speech/audio applications)

•  Limit cycle oscillations can only appear if the filter has
feedback. Hence FIR filters cannot have limit cycle
oscillations

•  Mathematical analysis is very difficult L

15

DSP 2016 / Chapter-5: Filter Implementation 29 / 32

Quantization Noise / Limit Cycles

•  Truncation often helps to avoid limit cycles (e.g.
magnitude truncation, where absolute value of quantizer
output is never larger than absolute value of quantizer input
(=`passive quantizer’))

•  Some filter realizations can be made limit cycle free, e.g.
coupled realization, orthogonal filters (details omitted)

DSP 2016 / Chapter-5: Filter Implementation 30 / 32

Here’s the good news:
For a..
•  lossless lattice realization of a general IIR filter
•  lattice-ladder realization of a general IIR filter
 …and when magnitude truncation (=`passive quantization’) is used,
the filter is guaranteed to be free of limit cycles!
 (details omitted)

 Intuition: quantization consumes energy/power, orthogonal filter

operations do not generate power to feed limit cycle

Quantization Noise / Limit Cycles

16

DSP 2016 / Chapter-5: Filter Implementation 31 / 32

Scaling

The scaling problem

•  Finite word-length implementation implies maximum representable

number. Whenever a signal (output or internal) exceeds this value,
overflow occurs.

•  Digital overflow may lead (e.g. in 2’s-complement arithmetic) to polarity
reversal (instead of saturation such as in analog circuits), hence may
be very harmful.

•  Avoid overflow through proper signal scaling, implemented by bit shift-
operations applied to signals, or by scaling of filter coefficients, or..

•  Scaled transfer function may be c.H(z) instead of H(z) (hence need
proper tracing of scaling factors)

DSP 2016 / Chapter-5: Filter Implementation 32 / 32

Scaling

The scaling problem

Further details see…

–  Literature

–  http://homes.esat.kuleuven.be/~dspuser/DSP-CIS/2016-2017/material.html

